
A Quantum Computational Compiler and Design Tool for
Technology-Specific Targets

Kaitlin N. Smith and Mitchell A. Thornton
Quantum Informatics Research Group

Southern Methodist University
Dallas, Texas, USA

{knsmith, mitch}@smu.edu

ABSTRACT
Quantum computing, once just a theoretical field, is quickly advanc-
ing as physical quantum technology increases in size, capability,
and reliability. In order to fully harness the power of a general
quantum computer or an application-specific device, compilers and
tools must be developed that optimize specifications and map them
to a realization on a specific architecture. In this work, a technique
and prototype tool for synthesizing algorithms into a quantum com-
puter is described and evaluated. Most recently reported methods
produce technologically-independent reversible cascades comprised
of a functionally complete set of operators with no regard to actual
technologically-dependent cell libraries or constraints due to a de-
vice’s pre-configured interconnectivity. In contrast, our prototype
tool synthesizes algorithms into technologically-dependent specifi-
cations that consist of a set of primitives and connectivity constraints
present in the computer architecture. The tool performs optimiza-
tions based on actual architectural constraints, and a high-quality
technology-dependent synthesized result is achieved through the
use of optimizing cost functions derived from real hardware and ar-
chitecture parameters. Additionally, another important aspect of our
tool is the incorporation of internal formal equivalence checking that
ensures the initially specified algorithm is functionally equivalent to
the optimized, technologically-mapped output. Experimental results
are provided that target the IBM Q family of quantum computers.

CCS Concepts
•Hardware→ Quantum computation;

Keywords
Quantum information science, QIS, quantum computing, logic syn-
thesis, compilation

1. INTRODUCTION
The field of quantum computation is of great interest since a quan-

tum computer (QC) can complete tasks such as searching large data
sets, accurately simulating quantum behavior, and other applications
with significant performance increases as compared to classical

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISCA ’19, June 22–26, 2019, PHOENIX, AZ, USA
c© 2019 ACM. ISBN 978-1-4503-6669-4/19/06. . . $15.00

DOI: https://doi.org/10.1145/3307650.3322262

approaches. Currently, there are various architectures for qubit rep-
resentation that are competing to become the standardized quantum
computing platform. This variety between machines, even between
those using the same underlying technology, causes issues during
the design process. For example, several different transmon-based
QCs have been developed by IBM. Although these implementations
use the same type of transmon qubit technology, differences in ar-
chitecture create compatibility issues which in many cases prohibit
the use of designs originally mapped for one QC to properly target
another transmon-based device. This challenge motivates the devel-
opment of techniques to automatically map and optimize quantum
circuits, or programs, to forms that are technologically dependent
and physically executable. By coupling this technology mapping
and optimizing backend to a QC compiler front-end, a complete
quantum logic synthesis tool results.

Special techniques are required to enable a synthesis tool to map
a generalized quantum circuit to the limited library of transforma-
tions that are available on a specific QC architecture. The tool must
reconfigure a circuit meant for one technology so that it can be
realized on another device, including the mapping of classical al-
gorithms to quantum machines. This technology mapping scenario
motivates the development of an automated quantum logic synthe-
sis tool, or hardware compiler, for technology-dependent targets.
Furthermore, the use formal equivalence checking confirms that
the generated technology-dependent circuits are logically identical
to their original, technology-independent specifications. The pro-
totype compilation tool also incorporates optimizations to boost
output circuit performance. Optimization procedures are applied
in both the technologically-independent intermediate form and the
technologically-dependent final result.

Quantum synthesis methodologies have been developed in the
past that generate reversible logic [1, 2], consider layout restrictions
of a grid-based quantum structure [3, 4], and map to one- and two-
qubit elementary gates [5, 6]. The technology-dependent quantum
design automation tool described here differs from these past ef-
forts in two important aspects: 1) the resultant quantum network is
mapped to an architecture with technologically-dependent operators
and interconnects, and, 2) the tool includes built-in formal equiv-
alence checking to confirm that the generated final circuit is func-
tionally equivalent to its original, technologically-independent form.
High-quality quantum circuit synthesis and mapping is achieved
through the use of formal verification. The Quantum Multiple-
valued Decision Diagram (QMDD), described in [7], is implemented
during compilation for efficient circuit equivalence checks.

The prototype tool described here maps, optimizes, and verifies
transformations of arbitrary quantum circuits into algorithms that
are executable on real QCs. These QCs are characterized by limited
connectivity for multi-qubit operations due to intrinsic architectural

579

https://doi.org/10.1145/3307650.3322262


constraints of the chosen topology. As a result, we describe our new
contribution of a tool that allows end-to-end quantum synthesis and
compilation that includes formal verification via the QMDD. The
IBM Q family of quantum machines was used as an example target
technology as information about this platform is readily available.
The tool, however, is modular in the sense that custom transmon-
based topologies may also be targeted for synthesis that are outside
the IBM family of quantum devices. This paper progresses as
follows: Section 2 provides background information on quantum
logic, computing, and operations as well as introduces the QMDD
data structure. Section 3 describes the IBM quantum machines and
tools. The methodology for technology-dependent quantum logic
synthesis and compilation is outlined in Section 4. Experimental
results are reviewed in Section 5. Section 6 draws conclusions
for the current study as well as details future developments and
improvements for the quantum synthesis and compilation tool.

2. BACKGROUND
This section includes a brief survey important concepts in quan-

tum information processing (QIP), QC architecture, and quantum
function representation, manipulation, and data structures. It is as-
sumed that the reader has a basic understanding of QIP and QC,
thus this survey is not exhaustive.

2.1 Quantum Computation
The unit of quantum information is the quantum bit, or qubit.

A qubit models information as values such as |0〉 or |1〉 which are
a set of orthonormal basis states in Dirac notation that represent
the two-dimensional column vectors of |0〉 =

[
1 0

]T and |1〉 =[
0 1

]T, respectively. The qubit can theoretically represent an
infinite continuum of states while in a superposition of the of basis
states, |0〉 and |1〉, as shown by

|ψ〉= α |0〉+β |1〉 (1)

In Eqn. 1, α and β are complex-valued probability amplitudes
for the basis states in the state vector. During measurement, the
probability that |ψ〉 = |0〉 is α∗α = |α|2 and the probability that
|ψ〉= |1〉 is β ∗β = |β |2 where ∗ indicates the complex conjugate.
Qubits collapse into a basis state after observation, and their quan-
tum superposition and entanglement properties are lost.

Quantum operators represent specific time evolutions of the quan-
tum state and thus purposely transform qubit state so that meaningful
QIP can occur. If a quantum algorithm is modeled as a circuit, quan-
tum operations can be viewed as quantum logic gates. Therefore,
the terms of “quantum operator” and “quantum gate” are often used
interchangeably. These operators are represented by a unique, uni-
tary transformation matrix, U. Common single- and multi-qubit
operations are provided in Table 1. It should be noted the Toffoli op-
eration can be generalized, Tn, where the number of controls, n−1,
is greater than two so that the total number of qubits it transforms,
n, is n > 3. The Toffoli and generalized Toffoli gate are important
operators in many classical to quantum logic synthesis techniques
as a result of the method in [1]. These gates, however, are often
unsupported by the native gate set of actual quantum machines.

Qubits and quantum operations can be physically realized with
a variety of different physical technologies such as with atomic
particles, (i.e., electrons, photons, etc.), or as superconducting solid-
state circuits such as the transmon [8, 9]. Quantum decoherence
is a phenomenon that is characteristic to a specific architecture,
and some quantum systems are more resilient to decoherence as
compared to others. In QIP circuit and QC design, there is a trade-
off between average decoherence times and the ability for qubits

to interact. Multi-qubit interaction is necessary to enable required
operations such as the CNOT or controlled-phase, CZ. The ability
for qubits to couple, however, implies that qubits also have the
undesirable capability to interact with the environment, increasing
the probability of decoherence. Determining qubit realizations that
allow for easy interaction with one another while also resisting
environmental coupling is currently an active area of research that
accounts for, in part, the lack of a wide consensus on the preferred
implementation of a qubit. Many current QC/QIP realization efforts
are focused upon the class of superconducting solid-state qubits as
they are considered by many to offer the best trade off between qubit
interaction versus average time of decoherence.

Table 1: Common Single- and Multi-Qubit Quantum Opera-
tors

Operator Symbol Transfer Matrix

Pauli-X (NOT)
[

0 1
1 0

]
Pauli-Y (Y)

[
0 −i
i 0

]
Pauli-Z (Z)

[
1 0
0 −1

]
Hadamard (H) 1√

2

[
1 1
1 −1

]
Phase (S)

[
1 0
0 i

]
π/8 (T)

[
1 0
0 eiπ/4

]
CNOT

[
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]

CZ

[
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

]

SWAP

[
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

]

Toffoli


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0



2.2 Quantum Cost
Quantum device manufacturers continue to pursue devices that are

more robust in terms of size and reliability while QIP researchers
address the key goal of enabling algorithms to be automatically
synthesized to physical devices. As a result, reducing the proba-
bility of decoherence during a QIP task becomes highly important.
With current implementations, the quantum state will eventually
decohere after some time. Additionally, the likelihood of decoher-
ence increases as a set of qubits undergoes more transformations.
Therefore, whenever considering quantum cost reduction, the most
common method is usually centered around reducing the total num-
ber of operations performed on a set of qubits, especially those that
are multi-qubit or those that are expensive in terms of fault tolerance,
such as the T gate (also known as the π/8 gate and its adjoint, T†

580



or π/8†) [10].
Arbitrary n-qubit gates, including the three-qubit Toffoli and its

generalized forms, are capable of being decomposed into a collec-
tion of single qubit gates along with the two-qubit CNOT gate [11].
Due to this property, the cost of a quantum circuit is typically a func-
tion of the gate counts of a quantum circuit decomposed into one-
and two-qubit primitives because more operations on a quantum
state introduce increased opportunity for decoherence. Therefore,
if an technology-independent circuit contains many complex multi-
qubit gates, a high cost will result as the algorithm is transformed
into an expanded, technology-dependent form. An example quan-
tum cost function for use in a compiler or synthesis tool is given
as

qcost = 0.5× t +0.25× c+a. (2)
In Eqn. 2, t is the count of all T and T† gates, c is the count of
CNOT gates, and a is the total gate count, or gate volume, for a
circuit. T gates are given an additional cost of 0.5 as compared to
all other single qubit gates because of the operator’s poor fidelity
as compared to other single qubit operators in fault tolerant quan-
tum implementations [10]. CNOT gates are given a cost that is
0.25 more than single qubit gates, with the exception of T, because
two-qubit operations for the target qubit in this paper, the trans-
mon, are characterized by a higher error rate as compared to the
other single qubit operations [12]. Our cost function was selected
based upon what is commonly seen in the literature: fewer gates
usually leads to smaller circuits with less probability of decoher-
ence and fewer T gates improves reliability and results in more
fault-tolerance. A larger quantum cost indicates a higher likelihood
of qubit decoherence and decreased fault tolerance. Quantum cost
for a design is minimized by the quantum logic design automation
tool during the optimization process. The QC compiler described
here similarly uses a quantum cost function to decrease decoher-
ence probabilities, however, when actual devices are targeted, the
cost function may also incorporate other terms such as area, power,
and interconnectivity costs. For this reason, the compiler can use
any arbitrary quantum cost function, and it is expected that each
particular technologically-dependent quantum cell library will be
characterized and annotated with custom cost functions to be used
by the synthesis tool. We are experimenting with other metrics, such
as qubit and operator fidelity, rather than decoherence times within
our cost evaluations. In this work, Eqn. 2 is used for exemplary
purposes due to gate fidelity information found in the literature [10,
12]. However, our prototype allows for users to easily modify cost
function weights so that optimization parameters can be customized.

2.3 Reversible Logic
Reversible logic, unlike classic Boolean logic, refers to an imple-

mentation where input information can theoretically be recovered by
executing the algorithm in reverse. When an algorithm is reversible,
the original circuit inputs are produced whenever their correspond-
ing outputs are fed into the generating function’s inverse. Reversible
switching functions are bijective [1]. A necessary condition of this
property requires the resultant circuit to have an equal number of in-
put and output ports. In general, the addition of “ancilla” inputs and
“garbage” outputs embeds an irreversible function into a reversible
form. A goal of the synthesis tool is to minimize the number of
added ancilla and garbage ports.

Reversibility is relevant to this work since all QIP and QC pro-
cesses are necessarily both logically and physically reversible as a
consequence of the postulates and axioms of quantum mechanics.
This is easily observed due to the fact that state transformations
corresponding to QIP operations are modeled as unitary transfor-

mations, U−1 = U†. Therefore, the automated synthesis method
described in this paper must produce reversible transformations
that are technology mapped. Furthermore, it is desirable to enable
a user to specify irreversible algorithms rather than requiring the
manual conversion of natively irreversible tasks into a reversible
form prior to invoking the tool to produce a technology-dependent
specification.

Algorithms exist that embed binary switching functions into re-
versible functions. This capibility to create reversible logic is im-
portant because it allows operations to be specified for a quantum
computer without needing to know extensive details of quantum
computing. Once the switching functions have been transformed,
they may be transformed into QIP circuits, or QC programs, for
evaluation on a quantum machine. An example of one of the first
reversible logic generators is the work discussed in [1]. The work
in [1] was the first such algorithm that allowed for practical map-
pings to occur over circuits that were of reasonable sizes. All prior
algorithms demonstrated exponential complexity in terms of the
number of irreversible function variables n. The algorithm in [1]
operates over an input switching function that is represented in an
exclusive-OR sum of products (ESOP) form and converts it into a
reversible Toffoli cascade. Because the input to the mapping algo-
rithm is in the form of a minimized ESOP rather than a truth table or
some other exponentially large representation, functions of several
hundred variables can be mapped to a reversible form in fractions
of a second of runtime. A later version of the ESOP approach is
described in [2]. This program includes the ESOP transformation
algorithms based on the work first described in [1] as well as a
reformulation of the method that utilizes decision diagram (DD)
representations. As is well-known, an ordered binary DD can be
viewed as a data structure that represents an irreversible function
as a set of disjoint cubes (i.e., each path from the initial node to the
terminal-1 node specifies a disjoint cube in the support of the func-
tion of interest), a method analogous to the ESOP technique in [1]
is formulated based on DD paths rather than textually-specified
cubes of an ESOP form. However, a disjoint cube list is usually
not as compact as a minimized ESOP cube list, but when the dis-
joint cube list is represented in DD form, additional savings in
memory requirements can be present due to the inherent sharing
of isomorphic subgraphs within the reduced DD. Existing quantum
synthesis efforts use techniques such as ESOP and DD representa-
tions to convert classical specifications to reversible logic [2, 6], but
since reversible logic is unrealizable on actual QCs, the resulting
outputs are technology-independent. For technology dependence,
high-level, many-input gates, such as the Toffoli and its generalized
forms, must be decomposed into one- and two-qubit primitive oper-
ators using transformations that keep the operational limitations of
physical devices in mind. Optimization processes are implemented
during this portion of the technology mapping process to assist with
minimizing the expanded circuit structures. Such quantum logic
synthesis that generates technology-dependent specifications from
generalized quantum, and therefore reversible, algorithms is the
focus of this work.

2.4 Quantum Multiple-valued Decision
Diagrams

As previously mentioned, n-qubit quantum logic gates or opera-
tors are functionally described using unitary matrices of size 2n×2n.
The size of the transfer matrix describing an entire quantum circuit
thus grows exponentially as the number of qubits in the function
increases. Data structures have been developed that allow these
matrices to be represented in a compact form. For example, the
QMDD represents quantum transfer matrices efficiently in the form

581



of a directed acyclic graph. The QMDD was first introduced in [7]
and is further described in [13].

QMDDs are a collection of nodes, or vertices, and directed edges.
Non-terminal vertices represent qubits and have four outgoing edges
that serve as one of the four quadrants in a quantum transformation
matrix. From left to right, the four edges leaving a non-terminal
node represent the sub matrices of U00, U01, U10, and U11 for the
quantum transformation matrix U. Since redundancy in the graph
is removed and each qubit variable only appears once, the QMDD
representing a quantum function becomes compact in size. An
example of the CNOT operation in the form of a QMDD is shown
in Fig. 1 where x0 represents the control qubit and x1 represents the
target qubit. Dashed lines are included in this illustration to make
submatrix values more apparent. The variable order is x0→ x1, so
x0 acts as the initial vertex and x1 vertices appear afterwards along
the path for submatrices that are not equal to the constant zero.

Figure 1: Representation of CNOT Operation as a QMDD.

The QMDD representation of a quantum function is canonical
with respect to a fixed variable order due to the reduction rules
described in [7]. Even if two circuits with the same transformation
matrix are described using different operators, their QMDDs will
be equal as long as the variable order used to construct the QMDDs
is identical. This concept is used to perform formal verification
within the automated quantum logic synthesis tool. An equivalence
check between the original technology-independent quantum circuit
and the resulting technology-dependent mapped circuit is ensured
by requiring the QMDDs to match. If the realizations are indeed
identical, the reduction rules for the QMDDs will cause the two
designs to share the same graph in memory.

3. IBM Q: A PHYSICAL QC IMPLEMEN-
TATION

IBM has developed multiple QCs and a quantum simulator, and
some of these devices are available to the public for experimen-
tation [14]. Because information about the IBM machines is ac-
cessible, they were used as the target technology platform during
experimentation. Details of the available QCs, both past and current
at the time of this work, can be found in Table 2.

IBM implements a type of superconducting semiconductor charge
qubit, the transmon, in their devices [12, 15, 16]. The IBM QCs in
Table 2, the largest containing 16 qubits, have a variety of available
qubit operations that can be used within algorithm realizations. The
following gates are included: NOT (X), Y, Z, H, S, S†, CNOT
(controlled-X), T, T† phase rotation, amplitude rotation, and mea-
surement.

QCs commonly have a limited range for multi-qubit coupling,
and this severely limits the total number of executable multi-qubit
operations [3]. The IBM machines demonstrate this constraint

Table 2: IBM Q Device Details (* indicates a retired device) [17,
18, 19, 20, 21]

Name Release Qubits Coupling
Date Supported Complexity

ibmqx2 Jan. 2017 5 0.3
(Yorktown)

ibmqx3* June 2017 16 0.083
ibmqx4 Sept. 2017 5 0.3

(Tenerife)
ibmqx5* Sept. 2017 16 0.0916

(Rueschlikon)
ibmq_16 Sept. 2018 14 0.098901

(Melbourne)

since the CNOT gate is the only available two-qubit gate, and only
certain qubits are eligible to act as either a control or a target for this
gate. Therefore, CNOT placement on the QC is restricted to what is
referred to as a coupling map that is set by the layout of the transmon
circuits on the QC. The coupling map prevents arbitrary CNOT
placement. Generalized quantum circuits must be redesigned so
that CNOT gates are mapped to connected qubits. The coupling
maps for the public IBM devices can be represented as dictionaries
where device = {a0 : [b0],a1 : [b1], . . . ,an−1 : [bn−1]}. In these
dictionaries, the keywords, ai, are qubits that can act as CNOT
controls and the paired list, bi, indicate the qubit(s) that the CNOT
control can target [17, 18, 19, 20, 21]:

• ibmqx2 = {0:[1,2], 1:[2], 3:[2,4], 4:[2]}

• ibmqx3 ={0:[1], 1: [2], 2:[3], 3:[14], 4:[3,5], 6:[7,11], 7:[10],
8:[7], 9:[8,10], 11:[10], 12:[5,11,13], 13:[4,14], 15:[0,14]}

• ibmqx4 = {1:[0], 2:[0,1], 3:[2,4] 4:[2]}

• ibmqx5= {1:[0,2], 2:[3], 3:[4,14], 5:[4], 6:[5,7,11], 7:[10],
8:[7], 9:[8,10], 11:[10], 12:[5,11,13], 13:[4,14], 15:[0,2,14]}

• ibmq_16 ={1:[0,2], 2:[3], 4:[3,10], 5:[4,6,9], 6:[8], 7:[8],
9:[8,10], 11:[3,10,12], 12:[2], 13:[1,12]}

The simulator device includes additional gates and qubits that are
unrestricted by a coupling map. IBM also has a 20 qubit machine
available for commercial use [14].

QCs differ in size and layout, and these variations determine
how much a general circuit must be modified in order for it to
be realizable on a particular machine. To give designers better
insight to the available qubit connections within a machine, we
devised a metric referred to as the “coupling complexity.” The
term complexity was chosen in order to describe the amount of
topological interconnects between qubits on a transmon QC. We
define coupling complexity as the ratio of the number of allowable
CNOT couplings found in the coupling map to the total number of
two-qubit permutations for a quantum machine. For example, the
ibmqx2 machine has 6 couplings on the coupling map and a total
of 20 two-qubit permutations:

qx2 coup. complex.=
6 avail. couplings
20 coupling perm.

= 0.3

A coupling complexity close to one indicates that a high per-
centage of a quantum machine’s qubits are available for arbitrary
two-qubit CNOT operations. Simulation devices that assume full

582



connectivity and that thus do not have coupling maps have a cou-
pling complexity equal to one. A coupling complexity close to zero
indicates that a low percentage of the qubits can be coupled. As
the number of qubits increase in a transmon QC, the coupling com-
plexity decreases because qubits are only able to couple with their
connected neighbors for multi-qubit operations. Coupling complex-
ity was calculated for each of the IBM machines where the coupling
map was available. This information is found in Table 2.

Circuits, or algorithms, can be loaded onto the IBM QCs and
input to the simulator via an available Python API called Qiskit
(Quantum Information Software Kit) [22]. Circuits can also be
created and run using the composer GUI on [14].

4. QUANTUM LOGIC SYNTHESIS
METHODOLOGY

Figure 2: Synthesis and Compilation Tool Architecture.

A complete flow chart describing the architecture for a quantum
logic synthesis and compilation tool is depicted in Fig. 2. This
figure illustrates how information is processed through the tool to
create the final implementation-specific quantum circuit represented
as Quantum Assembly Language, or QASM, code. Initially, the
original circuit or algorithm is parsed in as source code. Various
file formats are supported for the input specification depending on
the type of logic. If the input circuit is in the form of a classical
switching function, the front-end will handle the initial parsing and
translation of the specification into a reversible cascade of NOT,
CNOT, Toffoli, and generalized Toffoli operators using the algo-
rithm in [1]. The front-end result is a reversible representation of
the input circuit that is technology-independent. Reversible code
generated by the front-end as well as input circuits already imple-
mented with quantum logic and specified in a quantum instruction
language (i.e. a .qasm, .qc, or .real file format) are then processed
by the back-end of the design tool. The back-end performs trans-
formations and optimizations needed for technology mapping to
a specific physical quantum machine. Multi-qubit gate decompo-
sition algorithms, such as those given by Barenco et al. in [11],
are representative of some of the transformations implemented in
the back-end. However, additional optimizations were devised and
implemented to accommodate for device coupling maps that limit
qubit connections for two-qubit operations.

A significant drawback of solid-state QCs is that the stationary
qubits are limited to certain multi-qubit operations, like those de-
scribed in coupling maps, due to the layout and properties of the
physical device. This limitation, however, extends to other imple-
mentations such as optics and trapped ions because qubits must be

physically connected, in close proximity, and have the appropriate
operational characteristics to realize a multi-qubit operation such as
the CNOT or other controlled operations in any physical realization.
For this reason, a generic reroute algorithm capable of implementing
multi-qubit operations on uncoupled qubits for any architecture spec-
ified by a coupling map is essential for the technology-dependent
quantum logic synthesis tool. Tree data structures assist in finding
the shortest SWAP route for CNOT execution.

Figure 3: Implementation of SWAP Operation using CNOT.

The connectivity tree reroute algorithm (CTR) was implemented
in the quantum synthesis tool to automatically reroute CNOT opera-
tions that are not supported by a coupling map. In this method, a tree
structure based on the coupling map for the selected QC determines
the shortest SWAP path that the control qubit travels to reposition
for a CNOT operation. As shown in Fig. 3, a SWAP is implemented
with CNOT gates among physically connected qubits, as indicated
by the coupling map, causing the interchange of quantum informa-
tion. SWAP operations continue to move the control qubit until the
desired CNOT operation can execute on the specified target. After
the CNOT operation executes, the control qubit traverses the SWAP
path in reverse to return to its original position in order to preserve
the original assignment of qubits in the circuit.

To find the SWAP path, CTR builds a tree data structure. The
tree root node is the control qubit, and edges leading to other qubit
nodes are generated according to the available coupling map config-
urations. Because of the transformation in Fig. 6, direction of the
natively available CNOT operation does not matter when building
the connectivity tree. In other words, if a qubit |ψ0〉 can act as either
a control or target in a CNOT operation with qubit |ψ1〉, the two
qubits will be connected with an edge to form a potential SWAP
path. The tree describes all possible paths that the qubit can take,
until the shortest path to a position coupled with the target qubit is
found. If a node is reached that is already represented in the tree,
the branch is terminated. Pseudocode describing the CTR algorithm
is found in Fig. 4.

Figure 4: Pseudocode CTR Algorithm.

An example of the CTR algorithm in action can be seen in Fig. 5.
In this illustration, the desired operation is a CNOT with q5 as
the control and q10 as the target on the 16-qubit ibmqx3 machine.
According to the ibmqx3 coupling map, q5 and q10 cannot natively
perform a CNOT operation together. After implementing CTR,
however, the operation is performed after two swaps of first, q5 with
q12 and then second, q12 with q11. Since a connection between q11

583



and q10 exists on the coupling map, q11 acts as a control for q10.
After the desired CNOT operation executes, the information of the
control qubit swaps back to its original position, q5, on the QC.

Figure 5: CTR Implementation on the ibmqx3 Machine for a
CNOT with q5 as Control and q10 as Target.

The back-end generates technology-dependent QASM specifi-
cations based upon two distinct objectives. The first objective is
to produce QASM that conforms to the user-specified target QC’s
architectural constraints such as a fixed CNOT coupling map. The
second objective is to determine a mapping that minimizes quantum
cost. The quantum cost function is defined in Eqn. 2. A functional
prototype for the back-end included in Fig. 2 has been developed,
and this design automation tool is the subject of this paper. Results
in this work are targeted to the IBM family of QCs as well as ma-
chines inspired by the architecture of the IBM QCs, but custom
transmon devices with different coupling maps can be added to
the tool to provide additional targets during synthesis. The quan-
tum logic synthesis tool implements the following mapping and
optimization procedures:

1. CNOT operations placed in directions opposite of what is
available in coupling map may be reversed [8]. CNOT rever-
sal can be seen in Fig. 6.

2. CNOT operations on qubits not coupled directly or in reverse
on the coupling map are rerouted with CTR.

3. Generalized Toffoli gates are decomposed into Toffoli cas-
cades using [11].

4. Toffoli operations are decomposed into one and two-qubit
operators supported by the transmon technology library using
transform from [8].

5. Local optimizations based on removing partitions of gates that
equal the identity function are implemented recursively until
technology library cost function cannot be further reduced.

6. Local optimizations based on removing partitions of gates that
can be minimized with an logically identical circuit identity
are implemented recursively until technology library cost
function cannot be further reduced.

It should be noted that all SWAP operations will have a maximum
gate count of 7, including four H operations and three CNOT op-
erations, due to unidirectional transmon CNOT operations and the
identity pictured in Fig. 6.

After all synthesis and optimization procedures are complete,
formal verification is invoked by the compiler. QMDDs are used
in equivalence tests to formally verify all technology-dependent
compiler outputs. During this process, the original technology-
independent specification is compared to the generated technology-
dependent specification by building the QMDD data structures.
Since the QMDDs share isomorphic subgraphs, the pointers to
the original and technology-mapped specification will match if the
two designs are functionally identical. The final step of formal
verification is critical as it is important that the algorithm’s logic
is unchanged by the synthesis tool’s transformations and optimiza-
tions.

Figure 6: CNOT Orientation Reversal.

5. EXPERIMENTAL RESULTS
Back-end algorithms of the synthesis and compilation tool re-

sponsible for mapping and optimizing algorithms for real QC ar-
chitectures were developed in Python. The tool’s purpose is to
synthesize technology-dependent algorithms for execution on ac-
tual QCs using classical computing methods rather than simulating
quantum algorithms. Thus, a personal computer is sufficient for
running the quantum compiler with formal verification. Design au-
tomation, including formal verification, was performed on a laptop
running macOS 10.13.6 with an Intel i5 processor at 2.9 GHz and
8 GB of RAM. Although results in this section include the devices
in Section 3 as well as an example 96-qubit IBM-inspired layout,
additional architectures can be targeted for synthesis by adding the
desired topology coupling map to the device library of the tool.

The first set of benchmarks used during experimentation were
obtained from reference [23]. The technology-independent speci-
fications, titled “Optimal Single-target Gates,” range from 3 to 6
qubits in size. These important circuits were chosen as benchmarks
because they act as essential components for quantum logic syn-
thesis based on lookup-table approaches [6]. Complex reversible
and quantum circuits decompose into these functions, and in turn,
the single-target gates can be decomposed into one and two qubit
operations. These benchmarks were input into the synthesis tool as
technology-independent .qc files that contained single qubit opera-
tions and CNOT gates. When mapped to the simulator, the logic is
referred to as technology-independent because is not restricted by
the layout of a physical device. The simulator synthesis resulted in
technology-independent circuits that match what is featured in [23]
with respect to T counts and total gate counts because these gener-
ated circuits, like the original benchmarks, have no restrictions with
respect to where multi-qubit operations are placed. Cost function-
based optimization did not reduce the gate counts or the total Eqn. 2
cost of the benchmarks whenever they were mapped to the simulator
as the benchmark circuits are already in their most compact and
optimal form when qubit connections are unrestricted.

584



In reality, quantum circuit designers must be careful with gate
placement on real QCs due to architectural constraints. These archi-
tectural constraints limit what qubit pairs can couple for multi-qubit
transformations, and permitted qubit connections for a QC are de-
scribed in the form of a coupling map. When the single-target gate
benchmarks are mapped to real devices, unsupported gate place-
ments must be decomposed or rerouted with SWAP operations, as
described in Section 4, that cause the circuits to expand. It was noted
that QCs with a lower coupling complexity usually required more
gates to achieve a technology-dependent mapping. After mapping
finishes, the resulting circuit may be optimized using built-in local
optimizers. Synthesis results of the “Optimal Single-target Gates”
mapped to the IBM devices can be found in Table 3. This table
includes both pre- and post-optimization metrics for T-count, total
gate count, and cost calculated using Eqn. 2 for each of the gener-
ated designs. Technology-independent (i.e. the original, unmapped)
metrics for T-count, total gate count, and cost for the benchmarks
for unoptimized and optimized mappings were included as well
for comparison. A comparison can be made here because these
benchmark circuits are already fully optimized in a gate library suit-
able for IBM that includes one- and two-qubit gates when they are
not constrained by any sort of connection restrictions. When these
circuits are mapped to a real machine, however, they expand in size
because the circuits must be reconfigured to be executable. After
original mapping, optimizations help reduce the overall gate counts
and cost.

A few observations can be made from analyzing Table 3. First,
some designs were not synthesizable, as indicated by N/A, if the
target QC was too small for a circuit (i.e. 5 qubit machines cannot
support a circuit with n qubits where n > 5). Second, technology
mapping processes during compilation caused circuits in most cases
to expand. This expansion, sometimes of order ×10 in size, was
caused by the need to reroute CNOT operations to qubits where
they could execute. Fortunately, out of the 94 output technology-
dependent designs, 74, or approximately 79%, were improved when
optimization algorithms based on minimizing the transmon cost
function were implemented. Designs that improved in cost post-
optimization are emphasized in Table 3. Information about the
post-optimization cost function improvement for the technology-
dependent “Optimal Single-target Gates” is found in Table 4. The
greatest average percent decrease in cost was about 8.5% for the cir-
cuits mapped to the ibmq_16 QC. The average post-optimization
improvement for all of the technology-dependent forms of the refer-
ence [23] benchmarks was approximately 7%.

The second set of benchmarks tested on the automatic quantum
logic synthesis tool was a small set of Toffoli cascades from [24].
Toffoli cascade circuits are widely used to describe technology-
independent reversible and quantum logic algorithms in the form
of NOT, CNOT, Toffoli, and generalized Toffoli operations. These
circuits were used with the tool to demonstrate the Toffoli and
general Toffoli decomposition techniques. In their original form,
these technology-independent Toffoli cascades include larger, multi-
qubit gates that are not supported by the IBM transmon gate library.
The benchmarks may seem small because of their gate count, but
they are actually complex functions to implement because of the
required multi-qubit interaction. Synthesis results of the Toffoli
cascade benchmarks mapped to the IBM devices can be found in
Table 5. It should be noted that these results do not include a column
for technology-independent, unoptimized and optimized mappings
as seen in Table 3 because the Toffoli gate is not present in the
IBM gate library and is therefore not a technology-ready gate, even

when connections between the qubits on the quantum device are
disregarded.

In Table 5, circuits that could not synthesize because they were too
large for an architecture were once again indicated by N/A. These
experiments demonstrated that Toffoli decomposition followed by
mapping procedures caused circuits to expand in gate count up to
orders of magnitude of ×102 their original size. After optimization,
100% of the mapped Toffoli cascades in Table 5 decreased in size.
Information detailing the post-optimization improvement of the
Toffoli cascade benchmarks is found in Table 6. The greatest average
percent decrease in cost was nearly 30% for the circuits mapped to
the ibmqx3 machine. The average post-optimization improvement
for all of the reference [23] benchmarks was approximately 17.4%.

Most technology-dependent specifications in Table 3 and Table 5
were generated in approximately 10−2 seconds, but a few of the
larger benchmarks with more multi-qubit gates required a few sec-
onds with none exceeding 5 seconds for synthesis procedures. All
outputs were confirmed to be the same function as their original
technology-independent description by building the QMDD data
structure for each design and testing for equivalence.

The size of quantum architectures is anticipated to increase, so it
is important that design tools are able to scale. To test the synthesis
and compilation tool, a 96-qubit transmon-based QC architecture
was designed and loaded into the tool. The qubits of the machine
ranged from q0-q95, and the coupling map, pictured in Fig. 7, was
inspired by the ibmqx5 machine.

Figure 7: Proposed 96-qubit Machine used for Experimenta-
tion.

Benchmarks containing more qubits were needed for the larger

585



Table 3: Results of Compilation using Benchmarks from [23] Mapped to IBM Devices

Table 4: Percent Decrease of [23] Benchmark Cost after Opti-
mization

machine. Previous experimentation found that Toffoli circuits de-
composed into large designs. Additionally, those that included
generalized Toffoli gates with more controls had a greater final gate
volume. With this in mind, benchmarks with the gates T6, T7, T8,
T9, and T10 were designed for implementation on the 96-qubit ar-
chitecture. Each circuit contained a cascade of four gates of each
type, and they were placed on the QC in such a manner that the
gates shared at least a single qubit with another. Information about

the contents of the third set of benchmarks can be found in Table 7.
In this table, the controls and target for each Tn gate in the cascade
are described.

All of the Table 7 benchmarks were mapped to the 96-qubit ex-
ample QC of Fig. 7. Although each circuit originally included four
gates, the designs greatly increased in volume to accommodate to the
Fig. 7 coupling map as well as the one- and two-qubit transmon gate
library. Data concerning pre- and post-optimization T-counts, gate
counts, and cost is included in Table 8. A column for technology-
independent data for unoptimized and optimized mapping was also
omitted from this table for the same reasons as with Table 5. The
purpose of Table 8 is to not only demonstrate the generalized Toffoli
decomposition capabilities of our tool, but to also demonstrate that
the tool is scalable. In Table 8, optimization drastically improved
the overall cost on the larger machine. On average, the large Tof-
foli cascade benchmarks improved in cost by 39.5%. Most of the
resulting Table 7 technology-dependent circuits took under a second
to generate, with the largest taking approximately 6.5 seconds. All
of the output designs were verified for accuracy using the QMDD
equivalence test.

6. CONCLUSION
In this work, a formally-verified, technology-dependent quantum

logic synthesis tool for design automation that successfully maps and
optimizes quantum circuits to the IBM Q architectures is presented.
Whenever a technology-independent quantum circuit is input into
the tool, a QASM file that maps the circuit to a specific physical
quantum implementation is generated. To validate the quality of the
generated circuits, formal verification is completed using QMDDs.
Currently, the synthesis tool can decompose Toffoli gates, reroute
arbitrary CNOT connections, and optimize quantum circuits for exe-
cution on any IBM QC or user-input layout. Algorithms are flexible
so that quantum logic can be synthesized for any architecture using
NOT, Y, Z, H, S, S†, T, T† and CNOT whenever new coupling
maps are provided. Due to a modular design and formally verified
outputs, a generalized QC compiler and QIP circuit synthesis tool
has been developed.

586



Table 5: Results of Compilation using Benchmarks from [24] Mapped to IBM Devices

Table 6: Percent Decrease of [24] Benchmark Cost after Opti-
mization

Table 7: 96-qubit QC Benchmark Details
Name Gates Controls Target
T6_b 1: T6 q1, q2, q3, q4, q5 q25

2: T6 q21, q22, q23, q24, q25 q45
3: T6 q41, q42, q43, q44, q45 q65
4: T6 q61, q62, q63, q64, q65 q85

T7_b 1: T7 q1, q2, q3, q4, q5, q6 q25
2: T7 q21, q22, q23, q24, q25, q26 q45
3: T7 q41, q42, q43, q44, q45, q46 q65
4: T7 q61, q62, q63, q64, q65, q66 q85

T8_b 1: T8 q1, q2, q3, q4, q5, q6, q7 q25
2: T8 q21, q22, q23, q24, q25, q26, q27 q45
3: T8 q41, q42, q43, q44, q45, q46, q47 q65
4: T8 q61, q62, q63, q64, q65, q66, q67 q85

T9_b 1: T9 q1, q2, q3, q4, q5, q6, q7, q8 q25
2: T9 q21, q22, q23, q24, q25, q26, q27, q28 q45
3: T9 q41, q42, q43, q44, q45, q46, q47, q48 q65
4: T9 q61, q62, q63, q64, q65, q66, q67, q68 q85

T10_b 1: T10 q1, q2, q3, q4, q5, q6, q7, q8, q9 q25
2: T10 q21, q22, q23, q24, q25, q26, q27, q28, q29 q45
3: T10 q41, q42, q43, q44, q45, q46, q47, q48, q49 q65
4: T10 q61, q62, q63, q64, q65, q66, q67, q68, q69 q85

Table 8: 96-qubit QC Benchmark Compilation Results
Name Unoptimized Optimized Percent Cost

(T-count / gates / cost) (T-count / gates / cost) Decrease
T6_b 336/17312/19268 336/10156/11359 41.05

T7_b 448/20112/22400 448/12234/13694 38.87

T8_b 560/21264/23728 560/13134/14746 37.85

T9_b 672/17696/19784 672/11544/13002 34.28

T10_b 784/17792/19960 784/9518/10846 45.66

Average 39.54

The described synthesis tool shows great promise for simplifying
the quantum algorithm and circuit design process whenever real
quantum computer architectures are targeted for use. Moving for-
ward, additional decompositions for other controlled gates will be
included in the tool. More optimizations to further reduce a circuit’s
quantum cost, especially those that aim to minimize cost by finding

ideal qubit placement on a QC, will also be added. Experimentation
here focused on the IBM family of QCs, but in future work, the com-
piler will be expanded to target other quantum technology platforms.
The tool already supports the addition of coupling maps so that new
devices can be targeted, and the cost function can be modified to
reflect operational constraints. Since the tool has been designed in a
modular manner, new technology libraries for non-IBM platforms
can be added so that they may be flagged for use during synthesis.
As long as each library contains an associated cost function, whether
that be linear as the example in Eqn. 2 or nonlinear, existing op-
timizations based on minimizing the cost through the removal of
gate sequences that form the identity function can be ported and
implemented. In the future, we hope to target all transmon-based
technology platforms as well as quantum photonic structures with
formally-verified synthesis.

7. REFERENCES
[1] K. Fazel, M. A. Thornton, and J. Rice, “Esop-based toffoli

gate cascade generation,” in Communications, Computers and
Signal Processing, 2007. PacRim 2007. IEEE Pacific Rim
Conference on, pp. 206–209, IEEE, 2007.

[2] M. Soeken, S. Frehse, R. Wille, and R. Drechsler, “Revkit: A
toolkit for reversible circuit design.,” Multiple-Valued Logic
and Soft Computing, vol. 18, no. 1, pp. 55–65, 2012.

[3] M. Saeedi, R. Wille, and R. Drechsler, “Synthesis of quantum
circuits for linear nearest neighbor architectures,” Quantum
Information Processing, vol. 10, no. 3, pp. 355–377, 2011.

[4] C.-C. Lin, S. Sur-Kolay, and N. K. Jha, “Paqcs: Physical
design-aware fault-tolerant quantum circuit synthesis,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 23, no. 7, pp. 1221–1234, 2015.

[5] N. Abdessaied, M. Amy, M. Soeken, and R. Drechsler,
“Technology mapping of reversible circuits to clifford+ t
quantum circuits,” in Multiple-Valued Logic (ISMVL), 2016
IEEE 46th International Symposium on, pp. 150–155, IEEE,
2016.

[6] M. Soeken, M. Roetteler, N. Wiebe, and G. De Micheli,
“Lut-based hierarchical reversible logic synthesis,” IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2018.

[7] D. M. Miller and M. A. Thornton, “Qmdd: A decision
diagram structure for reversible and quantum circuits,” in
Multiple-Valued Logic, 2006. ISMVL 2006. 36th International
Symposium on, pp. 30–30, IEEE, 2006.

[8] M. A. Nielsen and I. Chuang, “Quantum computation and
quantum information,” 2010.

[9] J. Koch, M. Y. Terri, J. Gambetta, A. A. Houck, D. Schuster,
J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, “Charge-insensitive qubit design derived from the
cooper pair box,” Physical Review A, vol. 76, no. 4, p. 042319,
2007.

[10] M. Amy, D. Maslov, and M. Mosca, “Polynomial-time t-depth

587



optimization of clifford+ t circuits via matroid partitioning,”
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 33, no. 10, pp. 1476–1489, 2014.

[11] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo,
N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and
H. Weinfurter, “Elementary gates for quantum computation,”
Physical review A, vol. 52, no. 5, p. 3457, 1995.

[12] J. M. Chow, J. M. Gambetta, E. Magesan, D. W. Abraham,
A. W. Cross, B. Johnson, N. A. Masluk, C. A. Ryan, J. A.
Smolin, S. J. Srinivasan, et al., “Implementing a strand of a
scalable fault-tolerant quantum computing fabric,” Nature
communications, vol. 5, p. 4015, 2014.

[13] P. Niemann, R. Wille, D. M. Miller, M. A. Thornton, and
R. Drechsler, “Qmdds: Efficient quantum function
representation and manipulation,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 35, no. 1, pp. 86–99, 2016.

[14] “IBM Q.” http://research.ibm.com/quantum/.
[15] M. Takita, A. W. Cross, A. Córcoles, J. M. Chow, and J. M.

Gambetta, “Experimental demonstration of fault-tolerant state
preparation with superconducting qubits,” Physical Review
Letters, vol. 119, no. 18, p. 180501, 2017.

[16] A. D. Córcoles, E. Magesan, S. J. Srinivasan, A. W. Cross,
M. Steffen, J. M. Gambetta, and J. M. Chow, “Demonstration
of a quantum error detection code using a square lattice of
four superconducting qubits,” Nature Communications, vol. 6,
p. 6979, 2015.

[17] IBM Q team, “IBM Q 5 Yorktown backend specification
V1.1.0.” https://ibm.biz/qiskit-yorktown, 2018. Accessed:
Dec. 2018.

[18] IBM Q team, “IBM Q 5 Tenerife backend specification
V1.3.0.” https://ibm.biz/qiskit-tenerife, 2018. Accessed: Dec.
2018.

[19] IBM Q team, “IBM Q 16 Rueschlikon backend specification
V1.1.0.” https://ibm.biz/qiskit-rueschlikon, 2018. Accessed:
Dec. 2018.

[20] IBM Q team, “IBM Q 16 ibmqx3 backend specification
V1.0.0.” https://ibm.biz/qiskit-rueschlikon, 2018. Accessed:
Dec. 2018.

[21] IBM Q team, “IBM Q 16 Melbourne backend specification
V1.1.0.” https://ibm.biz/qiskit-melbourne, 2018. Accessed:
Dec. 2018.

[22] https://github.com/QISKit.
[23] “Reversible logic synthesis and quantum computing

benchmarks.” http://quantumlib.stationq.com/, 2017.
[24] http://www.revlib.org/.

588

 http://research.ibm.com/quantum/
 https://ibm.biz/qiskit-yorktown
https://ibm.biz/qiskit-tenerife
https://ibm.biz/qiskit-rueschlikon
https://ibm.biz/qiskit-rueschlikon
https://ibm.biz/qiskit-melbourne
https://github.com/QISKit
http://quantumlib.stationq.com/
http://www.revlib.org/

	Introduction
	Background
	Quantum Computation
	Quantum Cost
	Reversible Logic
	Quantum Multiple-valued Decision  Diagrams

	IBM Q: A Physical QC Implementation
	Quantum Logic Synthesis Methodology
	Experimental Results
	Conclusion
	References

