Access Improvements to Densely Packed Quantum Memory

Kabir Dubey* and Kaitlin N. Smith
Department of Computer Science, Northwestern University
Evanston, IL, USA
*kabir @u.northwestern.edu

Abstract—Fault-tolerant quantum memory is essential for
large-scale quantum computer systems and has recently achieved
major experimental and theoretical advances. In 2023, McEwen,
Bacon, and Gidney showed that walking code circuits move sur-
face code logical qubits diagonally while maintaining comparable
logical performance to standard surface code circuits. Building
on this work, we apply gliding codes to create access hallways in
densely packed qubit arrays using minimal ancilla space. This
approach provides arbitrary access to stored qubits and supports
cache-like eviction of qubits from the storage array. For a storage
layout of [ x w surface code logical qubits, our design reduces
spacetime volume by O(lw) when compared to loose packings
which allocate rows and columns of ancilla qubit patches between
each logical qubit.

I. INTRODUCTION

Quantum computer systems typically use hot and cold stor-
age units for resource management at scale. In error-protected
storage, high-quality logical qubits are actively maintained
while computational resources are generated on demand. The
distinction between hot and cold depends on the access latency
for the operation of interest. Such a design offers quantum
computer systems enhanced resource allocation capabilities
and greater resilience to errors.

For instance, when connectivity is limited, one may max-
imize the use of a quantum LDPC code by concatenating it
with an outer code that has a higher ratio of logical qubits
to physical qubits [6]. The surface code is well-suited for
this technique, as it provides high-quality logical qubits that
can be assigned to storage units with increased protection
from parity checks along rows and/or columns called yokes.
Yoked surface codes singlehandedly nearly triple the logical
encoding rate of standard surface codes in the teraquop regime
[7]. 2D yoked logical qubits in cold storage reach a logical
error rate of 1071% with 430 physical qubits per logical qubit.
Alongside other techniques, this reduces the estimated spatial
footprint of factoring a 2048 bit RSA integer by an order of
magnitude [5]. Dynamical codes in general are expected to
rely on similar storage concepts for their system operations,
provided that a compiler can efficiently schedule operations
between subsystems.

The topology of a quantum computer architecture com-
pletely determines its compilation model for resolving two-
qubit interactions, which itself enables the movement of
logical information throughout the computer system. In the
context of topological quantum error correction (TQEC), these
movement operations are performed using lattice surgery,
requiring either ancillary hallways between and/or around each

logical qubit or a compact allocation computed heuristically.
Here, we consider techniques to organize storage units with
low spacetime volume using walking surface code circuits.

II. WALKING CODES

An eye for the overall spacetime structure of topological
codes, as opposed to static stabilizer circuits, informs time-
dynamical surface code circuits which achieve comparable
logical performance to standard surface codes while relaxing
hardware requirements [[1], [8]l. In the time-dynamic picture,
one may analyze code stabilizers by aggregating the parity
checks done by the measurements in every cycle circuit
through space and time. A walking surface code circuit lever-
ages the freedom provided by allowing detecting region shapes
to break the fixed location of code stabilizers on the underlying
physical qubit grid. The circuit is comprised of stepping
circuits which are identical to a standard surface code cycle
circuit except the last layer of CNOT gates reverse the control
and target of the first CNOT layer (Fig. 12, [8]). Degrees of
freedom for qubit reset and reuse allow walking surface code
instructions to replace lattice surgery instructions in a way that
reduces space without increasing time or reducing the code
distance. Movement patterns enabled by walking encompass
oscillations where the patch returns to its initial position ev-
ery two cycles (wiggling), continuous unidirectional diagonal
movement (gliding), and lateral displacement achieved though
alternating rectilinear steps (sliding).

Gliding enables surface code patch movement in 2d rounds.
Rather than taking a half-step in each round, one can flip the
direction of the first and last CNOTs in the cycle, as opposed
to just the last, and reduce the movement time to d rounds [4].
Gliding reduces the path length of a movement from the origin
to a point (4, j) to min(|é|, |j|) compared to the rectilinear cost
of |i| 4 |j| for lattice surgery. Appendix C of [8] shows that
gliding codes can shift a dense linear register of N logical
qubit patches by S qubits in a diagonal manner, saving N2 —
2N S units of spacetime volume compared to lattice surgery.

III. HOT STORAGE IN A DENSE PACKING

We expand the shift procedure in [8]] by considering dy-
namic gliding instructions that temporarily open ancilla hall-
ways. This enables flexible, low-latency qubit communication
channels within an otherwise dense hot storage layout. Our
storage design accommodates an array of [ X w rotated surface
code logical qubits, each with code distance d. An external
source qubit v must traverse a path P through the storage area



to reach a sink position v for interaction with a target qubit in
storage, all while maintaining logical error protection. A con-
ventional hot storage area with both row and column ancilla
hallways (Fig. |1} left) would require ((2/+1)(2w+1) —lw)d?
qubits of ancilla space, allowing the source qubit to enter or
exit the storage unit in d rounds via lattice surgery.

Dense packing offers an efficient alternative if two adjacent
borders of ancilla qubits are allocated to enable any subset
of the array to slide or glide in and out (Fig. [I] right). This
approach reduces the ancilla space to (I + w + 1)d? qubits,
though it introduces additional time overhead in the form of
hallway creation. Moving all logical qubits obstructing path P
in parallel along a single-file diagonal line requires 2d rounds
to create the necessary ancilla hallway. The source qubit can
then traverse the cleared path in d rounds, yielding a total
movement time of 3d rounds.

[ T ., ® [ ] [ ] ° i/././
o — v/ /S
w1 i 90:0, @ O
e e | e e e _i///
([ ] o o
(] [ ] L] L] L] ///
- (;,0) b oo [
0,0 . IL.

2+1 I+1

Fig. 1: Storage of | = 5 by w = 4 logical qubits, with the
u — v path in blue. Loose packing is left, dense packing is
right. Diagonal gliding in green opens the ancillary hallway.
Each of the two red dashed (resp. solid) edges represent the
target qubit’s X (resp. Z) boundary operator.

To compare the strategies quantitatively, we use the space-
time product to get the cost C10%%) := (2/+1)(2w+1)d?-d =
(41w + 21 + 2w + 1)d? for lattice surgery in a loose packing,
and C4) — (141)(w+1)d?- (d+2d) = 3(lw+1+w+1)d>
for gliding in our dense packing. The difference, in units of
spacetime blocks, is given by,

AC = (CUooe) — Cleme)y @ = Jy — 1 —w — 2, (1)

which is a monotonic increasing and nonnegative function for
Il =2 (resp. w=2) and w > 4 (resp. [ > 4) or both [, w > 3.

We assume that exposing only one boundary of the target
qubit suffices for any packing allocation and access step.
Compared to packings with only ancilla columns or rows, we
lose the spacetime volume advantage if gliding requires one
step per cycle, but maintain it for rectangular packings which
glide at two steps per cycle. To expose the opposite boundary,
one may either: (a) perform a patch rotation on the target qubit
[7], (b) glide both the target and all qubits in the column above
it, or (c) allocate a full perimeter of ancilla space to glide the
rows below the target.

An additional complication arises from the fact that opening
access hallways with gliding has each qubit incur an error sup-
pression penalty because walking circuit performance is not

as good as static circuits [[1], [8]]. Therefore, we expect access
policies involving lattice surgery or sliding circuits (optionally
synchronized with wiggling) to potentially decrease overhead
by moving less qubits overall. We defer the simulation of the
overhead associated with the aforementioned strategies and
their combinations to future work.

IV. DISCUSSION

Under assumptions of parallel control and agnostic weight-
ing of space and time resources, our layout achieves strictly
better resource efficiency than loose packings for any non-
trivial storage area. Our approach does not offer better access
latency than loose packing or a smaller spatial footprint than
dense packing, but can instead be viewed as a warm storage
design that provides the minimal spatial overhead needed for
moderate access latency. Since most TQEC systems must be
decoded in real-time with minimal congestion and blocking,
we expect many compiler workloads will benefit from a cache
hierarchy based on access latency.

The viability of our procedure remains to be fully es-
tablished because we have not yet characterized the logical
error rate of our instruction set. While one may extrapo-
late the performance of gliding codes from Fig. 17 in [8],
definitive assessment requires dedicated simulation. Moreover,
although large-scale circuit simulations can be executed in
St im through parallelized jobs using sinter, such analyses
are seldom undertaken due to the difficulty of building large
circuits [3[, [7]. To address this limitation, we employ the
open-source software package tgec, which models logical
operations as (2+1)-dimensional blocks and compiles them
into Stim files for generating plots that confirm error sup-
pression at the expected scaling p(t1)/2 for physical qubit
error rate p [2]. We are currently developing functionality
within tgec to represent storage units and walking surface
code circuits, with results reserved for future publication.

V. ACKNOWLEDGMENTS

We thank Matt McEwen for helpful comments. We thank
the |t gec Design Automation community for being a space to
learn, discuss, and test the ideas presented in this paper [2].
This research was supported by Google’s Research Scholar
Program.

REFERENCES
[1

—

Google Quantum Al et al. Demonstrating dynamic surface codes. arXiv

preprint arXiv:2412.14360, 2024.

[2] TQEC Community. Design automation for topological quantum error
correction, publication pending. tqec.github.io/tgec/, 2025.

[3] Craig Gidney. Stim: a fast stabilizer circuit simulator.

[4] Craig Gidney. Inplace access to the surface code y basis.

8:1310, April 2024.

Craig Gidney. How to factor 2048 bit rsa integers with less than a million

noisy qubits, 2025.

Craig Gidney and Thiago Bergamaschi.

computer on a line, 2025.

Craig Gidney, Michael Newman, Peter Brooks, and Cody Jones. Yoked

surface codes, 2023.

Matt McEwen, Dave Bacon, and Craig Gidney. Relaxing Hardware

Requirements for Surface Code Circuits using Time-dynamics. Quantum,

7:1172, November 2023.

Quantum,

[5

—_

[6

—

A constant rate quantum

[7

—

[8

—


https://github.com/tqec/tqec
tqec.github.io/tqec/

	Introduction
	Walking Codes
	Hot storage in a dense packing
	Discussion
	Acknowledgments
	References

